Introducing Fixed-Wing Aircraft into Cooperative UAV Collision Avoidance System

Dmitrijs Lancovs

In: Kabashkin I., Yatskiv I., Prentkovskis O. (eds) Reliability and Statistics in Transportation and Communication. RelStat 2017. Lecture Notes in Networks and Systems, vol 36. Springer, Cham
DOI: 10.1007/978-3-319-74454-4_38
: Unmanned aerial vehicles, Automatic dependent surveillance–broadcast, Unregulated airspace, Collision avoidance system, Simulation 

Available at Springer: REQUEST FULL TEXT Export citation: BibTeX RIS


Unmanned aerial vehicles (UAV) have become popular means of carrying light payloads for survey, mapping, delivery and various other purposes. Collision avoidance mechanisms are being actively researched, but non-cooperative solutions are still unreliable. A cooperative solution is required, based on commercial off-the-shelf hardware to provide this capability.

This system would be classified as “Class A” in manned aviation based on potential for human injury or death in case of failure, requiring a specific level of reliability.

A stepwise approach to designing such system was proposed, starting with initial operating range and then integrating various internal and external factors at each stage of modelling. UgCS mission planning and flight control software was used, and model was verified and validated.

First results of modelling for multicopter craft were produced, establishing operating ranges of ideal transmitter and receiver in a deterministic, noiseless environment, with a completely reliable channel.

This article introduces fixed-wing airframes into the simulation and updates initial operating range requirements, performing simulation across all the previous scenarios with fixed-wing UAV encounters against other fixed-wing UAVs as well as multicopters.

Initial operating range requirements were updated. No significant changes in operating range were observed, and it still is significantly shorter than that of automatic dependent surveillance-broadcast (ADS-B). Transmitters and receivers operating within this range exist and are used on commercial UAVs, albeit for different purposes, indicating that such system is feasible with current technology.